
6.2 Signal Space Concepts

As in the case of vectors, we now develop a parallel treatment for a set of
signals.

Definition 6.36.

(a) The inner product of two generally complex-valued signals x1(t) and
x2(t) is denoted by 〈x1(t), x2(t)〉 and defined by

〈x1(t), x2(t)〉 =

∫ ∞
−∞

x1(t)x
∗
2(t)dt.

(b) The signals are orthogonal if their inner product is zero.

(c) The norm of a signal is defined as

‖x(t)‖ =
√
〈x(t), x(t)〉 =

√
Ex

where Ex is the energy in x(t):

Ex = 〈x (t) , x (t)〉 = =

∞∫
−∞

|x (t)|2dt

(d) A collection of N signals is orthonormal if the signals are orthogonal
and their norms are all unity.

Example 6.37. Consider the two waveforms shown in Figure 15.
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Figure 15: Two Waveforms in Example 6.37
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Definition 6.38.

(a) The projection of x2(t) to x1(t) is given by

projx1(t)x2 (t) = =
〈x2 (t) , x1 (t)〉
〈x1 (t) , x1 (t)〉

x1 (t) =
〈x2 (t) , x1 (t)〉

Ex1

x1 (t)

(b) The cross-correlation coefficient of x1(t) and x2(t) is defined as

ρx1,x2 =
〈x1 (t) , x2 (t)〉√

Ex1Ex2

.

• projx1(t)x2 (t) =
√
Ex2ρx2,x1

x1(t)√
Ex1

Example 6.39. For the two waveforms shown in Figure 15,

6.40. Similar to 6.31, the Gram-Schmidt Orthogonalization Proce-
dure (GSOP) can be used to construct a set of orthonormal waveforms
from a set of finite energy signal waveforms: {sj(t), j = 1, 2, . . . ,M}.

The first orthonormal function is simply constructed as

φ1(t) =
u1(t)√
Eu1

=
s1(t)√
Es1

.

The subsequent orthonormal functions are found as follows:

φi(t) =
ui(t)√
Eui

,

where the unnormalized basis function ui(t) is given by

ui(t) = si(t)−
i−1∑
k=1

projuk(t)si (t).

and

projuk(t)si (t) =
〈si (t) , uk (t)〉
〈uk (t) , uk (t)〉

uk (t) = 〈si (t) , φk (t)〉φk (t)

As with the GSOP for vectors, we also discard the zero functions. In
general, the final number of orthonormal functions, N , is less than or equal
to the number of given waveforms, M , depending on one of the two possi-
bilities:
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(a) If the waveforms {sj(t), j = 1, 2, . . . ,M} form a linearly independent
set, then N = M .

(b) If the waveforms {sj(t), j = 1, 2, . . . ,M} are not linearly independent,
then N < M .

Example 6.41. Consider the four waveforms illustrated in Figure 16. Use
the Gram-Schmidt orthogonalization procedure (where the waveforms are
applied in the order given) to find the orthonormal basis waveforms φ1(t),
φ2(t), . . . whose linear combinations can be used to represent the four wave-
forms.
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Figure 16: Four signals for orthogonalization in Example 6.41
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6.42. Once we have constructed16 the set of, say N , orthonormal waveforms
{φi(t), i = 1, 2, . . . , N}, we can express the signals si(t) as linear combina-
tions of the N orthonormal basis functions φi(t). Thus, we may write

sj(t) =
N∑
i=1

s
(j)
i φi(t) (33)

where the constants (weights)

s
(j)
i = 〈sj(t), φi(t)〉 . (34)

Note that s
(j)
i φi(t) = 〈sj(t), φi(t)〉φi(t) can be geometrically interpreted as

the projection of the signal sj(t) onto the ith axis, φi(t).
Based on (33), each signal may be represented by the vector (or sequence)

s(j) = (s
(j)
1 , s

(j)
2 , . . . , s

(j)
N )T , (35)

or, equivalently, as a point in the N -dimensional (in general, complex) signal
space.

The (mathematical/conceptual) conversion/mapping from waveform to
it corresponding vector in (35) and (34) is shown in Figure 17a. The inverse
mapping from vector to waveform in (33) is shown in Figure 17b.

Example 6.43. For the four waveforms in Example 6.41 and the orthonor-
mal basis derived from GSOP,

16We have shown how this set can be constructed from GSOP. However, in practice, this set may be
derived from different procedure.
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Figure 17: Waveform to vector (a), and vector to waveform (b) mappings.

Definition 6.44. From 6.42, a set of M signals {sj(t), j = 1, 2, . . . ,M} can
be represented by a set of M vectors

{
s(j)
}

in the N -dimensional space. The
corresponding set of vectors is called the signal space representation, or
constellation, of {sj(t), j = 1, 2, . . . ,M}.
6.45. From the orthonormality of the basis, we have

(a) the inner product of two signals is equal to the inner product of the
corresponding vectors:

〈si(t), sj(t)〉 =
〈
s(i), s(j)

〉
.

(b) Ej ≡ Es(j) = ‖sj(t)‖2 =
∥∥s(j)

∥∥2
.

6.46. It should be emphasized, however, that the functions {φi(t)} ob-
tained from the Gram-Schmidt procedure are not unique. If we alter the
order in which the orthogonalization of the signals {sj(t)} is performed,
the orthonormal waveforms will be different and the corresponding vector
representation of the signals {sj(t)} will depend on the choice of the or-
thonormal functions {φi(t)}. Nevertheless, the dimensionality of the signal
space (N) will not change, and the vectors s(j) will retain their geometric
configuration; i.e., their lengths and their inner products will be invariant
to the choice of the orthonormal functions {φi(t)}.
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